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ARTICLE OPEN

Autonomy in materials research: a case study in carbon
nanotube growth
Pavel Nikolaev1,2, Daylond Hooper1,2,4, Frederick Webber1,2,5, Rahul Rao1,2, Kevin Decker1,2, Michael Krein3, Jason Poleski3,
Rick Barto3 and Benji Maruyama1

Advances in materials are an important contributor to our technological progress, and yet the process of materials discovery and
development itself is slow. Our current research process is human-centred, where human researchers design, conduct, analyse and
interpret experiments, and then decide what to do next. We have built an Autonomous Research System (ARES)—an autonomous
research robot capable of first-of-its-kind closed-loop iterative materials experimentation. ARES exploits advances in autonomous
robotics, artificial intelligence, data sciences, and high-throughput and in situ techniques, and is able to design, execute and analyse
its own experiments orders of magnitude faster than current research methods. We applied ARES to study the synthesis of single-
walled carbon nanotubes, and show that it successfully learned to grow them at targeted growth rates. ARES has broad implications
for the future roles of humans and autonomous research robots, and for human-machine partnering. We believe autonomous
research robots like ARES constitute a disruptive advance in our ability to understand and develop complex materials at an
unprecedented rate.

npj Computational Materials (2016) 2, 16031; doi:10.1038/npjcompumats.2016.31; published online 21 October 2016

INTRODUCTION
Technological progress has been exponential in modern times:
Powered flight progressed from the Wright Brothers’ Flyer to the
Apollo Moon Landing in less than 70 years, and Moore’s Law
recently celebrated its 50th anniversary of continued doubling of
computing technology every 2 years. Advances in materials have
enabled much of our technological progress,1 but the process of
materials development itself remains slow, often 20 years from
invention to use.2 One reason is that current methods of research
are labour intensive. Humans drive most aspects of research, from
initial hypothesis generation to experimental design, analysis,
interpretation and iterative hypothesis refinement.
Many materials problems are complex and high dimensional.

The number of experiments needed to capture the relevant
phenomena is often overwhelmingly large and slows research. To
address this, automation has been applied to research processes
via high-throughput and combinatorial techniques in the fields of
life sciences3–7 and materials research.8–16 In addition to automa-
tion, computation is being exploited to speed research.
The Materials Genome Initiative17 and related Integrated Compu-
tational Materials Science and Engineering efforts18 have high-
lighted the need for computational approaches to more
effectively make use of the explosion in data generation. However,
neither automation nor Integrated Computational Materials
Science and Engineering addresses the iterative nature of the
research process. Each new set of experiments brings new
knowledge to incorporate into the design of subsequent
experiments. Here the human involvement in analysis and
experimental design for high-throughput approaches remains a

bottleneck.3 The solution to these problems is to team human
researchers with autonomous research robots that can capture
and incorporate new experimental knowledge in an iterative
learning loop, enabling us to traverse complex experimental
parameter spaces.19

Autonomy is a topic of great current interest, and is an
extension of automation; an autonomous system is capable of
changing its behaviour in response to a changing environment.
Traditional examples include driverless cars,20 spacecraft21 and
unmanned aerial vehicles.22,23 In autonomous systems, models of
the environment are built up and decisions are exercised based on
sensory data. In the context of scientific research, autonomy can
be applied to systems where available instrumentation is
employed as sensory input. Autonomy has already impacted the
life sciences, exemplified by excellent work in the study of gene
functions24–26 and drug discovery.27,28 However, autonomy has
yet to deeply impact materials discovery and research. Here we
demonstrate our Autonomous Research System (ARES), which we
believe is the first of its kind to combine robotics, artificial
intelligence (AI), data science and in situ techniques towards the
vastly complex realm of materials development. In particular, we
applied ARES towards the synthesis of single-walled carbon
nanotubes (CNTs).
CNTs have unparalleled properties, combining strength and

stiffness with extreme electrical and thermal conductivity. These
properties are being exploited in nanoelectronic and plasmonic
devices, lightweight conductive cables, composites and ballistic
materials, as well as biological and chemical sensors.29,30 But the
synthesis of CNTs remains poorly controlled and poorly
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understood, despite two decades of intensive effort. The defective,
impure material that generally results from typical growth
methods also lacks the diameter and helicity control needed for
electronics, and the poor yield and product variability increases
cost and impedes transition of this important material. One of the
biggest challenges to controlling growth is the overwhelmingly
large experimental parameter space (e.g., temperature, pressure,
gas composition). Here we report the successful demonstration of
autonomy applied to the experimental study of CNT synthesis,
wherein ARES autonomously traversed high-dimensional para-
meter space, varying multiple growth parameters between each
experiment with the goal of learning to control CNT growth rate.
This work paves the way for ARES to be expanded to other
materials and processes, and signifies a fundamental change in
the process of research by teaming human and robot researchers
to attack vastly more complex and potentially impactful problems.

RESULTS
With ARES, we successfully built and demonstrated an autono-
mous research system capable of learning to grow CNTs by
developing an AI planner and linking it to an automated growth
reactor with in situ characterisation used as feedback control to
iteratively define, conduct and analyse experiments. ARES
continuously improved its ability to target growth rates over a
series of hundreds of experiments. Each robotically controlled
experiment consisted of synthesising CNTs by a chemical vapour
deposition (CVD) process where the ARES AI planner supplied the
growth conditions—temperature, pressure, and partial pressures
of ethylene, hydrogen and water vapour.
A unique feature of ARES is the use of a laser to individually heat

small (10 μm) pillars of silicon pre-seeded with catalyst15,31–34 for
the CVD reaction (see experimental details and Supplementary
Figure S1 for a schematic diagram of the instrumentation). We
chose cobalt as the growth catalyst (2 nm film on a 10 nm thick
alumina support), which was deposited uniformly onto the micro-
pillars. Each pillar was thermally isolated on a wafer of thousands
of pillars, making it in effect an independent micro-reactor. This
enabled hundreds of experiments to be conducted in series by
moving from one pillar to the next, with the ability to change all
the experimental input conditions (i.e., temperature, pressure and
gas composition). In addition, because of our unique configura-
tion, ARES conducted its series of experiments without the need to
exchange substrates from the growth chamber, thus enabling
such high experimental throughput with minimal human inter-
vention. Recently we demonstrated rapid automated experimen-
tation with rates of up to 100 experiments per day (compared to 1
per day for conventional methods) for a series of 534 experiments
in multi-dimensional parameter space.15

The ARES heating laser also served as the excitation source for
Raman spectroscopy, enabling in situ acquisition of spectra during
CNT growth. The characteristic Raman peak from CNTs, called the
G band, corresponds to tangential vibrations of the carbon atoms,
and its intensity is representative of the yield.31 ARES uses
the increase in intensity of the G band with time during
each experiment to determine the CNT growth rate, νexp (taken
as the maximum experimentally observed growth rate, see
Supplementary Figure S2). The experimental growth rate was
used as the signal for the ARES feedback loop.
Our overall objective for ARES was to autonomously learn to

control the growth rate of CNTs using AI and closed-loop feedback
over many experimental iterations. And so, building on our
previous work, we implemented an AI planner that proposed new
experimental growth conditions based on an analysis of a
database of prior experiments, iteratively improving its ability to
predict growth rates. The AI experimental planner was comprised
of a random forest model35 with growth conditions exercised
through a genetic algorithm.36 This combination was chosen for

its ability to capture nonlinear relationships between input and
output variables within disjoint design spaces,37 which we
deemed appropriate for the complexity of nanotube growth. It
is currently implemented in a customised version of the Lockheed
Martin Nanotechnology Material Data Mining, Modeling
& Management (NMD-M3) software tool.38 Before the first
autonomous experiments, an initial set of 84 experiments was
conducted to provide a database of prior knowledge needed for
the random forest planner to build its first model. These
experiments were designed to span the growth parameter input
space in a grid style and were executed in automated mode, i.e.,
with pre-planned conditions supplied by the user but executed
without user intervention.
Once the initial database was established, ARES performed a

series of more than 600 experiments in autonomous mode, where
the AI planner generated input conditions for each experiment.
For each experimental iteration the AI planner received an
objective growth rate from the user. It then analysed the database
of prior experiments and generated new experimental growth
conditions expected to achieve a predicted growth rate, νpred, that
targeted the user-supplied objective growth rate. Because the
database incompletely spans the experimental parameter space,
the predicted growth rate can differ from the objective, a known
effect arising from domain applicability.39 After each experiment
the database of prior experimental results was updated with the
resultant experimental growth rate, and the planner refined its
model representation to reflect the latest information. Over the
course of the experimental campaign the user periodically
modified the objective growth rate to cause ARES to probe a
broader span of the experimental parameter space, which
increased its domain coverage. To test for convergence between
the predicted and experimentally achieved growth rates, series of
experiments were grouped into tasks of 29–94 experiments. The
objective growth rate was held constant for later tasks, but varied
within some earlier tasks (see Supplementary Table S1).
The results of the convergence test are shown in Figure 1a,

which compares the experimental growth rates to the growth
rates predicted by ARES. Note that as ARES gained more
experience, i.e., as the cumulative number of experiments
increased, the spread between experimental and predicted
growth rates became smaller, thus demonstrating experimental
convergence. We quantified convergence by normalising the
difference between experimentally obtained and predicted
growth rates: Δ ¼ νexp - νpred

νpred
in Figure 1b. The mean values of Δ,

μΔ and their s.d.s., σΔ, for each task enabled a statistical treatment
of the data to analyse the trend towards convergence. As ARES
learned to target growth rates, the mean difference from the
prediction trended towards zero, implying that it successfully
predicted the experimental growth rate. Moreover, the s.d.
reduced to approximately 30%. To understand the context of
these s.d. values, we conducted a series of experiments using the
same input conditions, and analysed the statistical spread in the
experimental growth rate. We found that the intrinsic variability in
the system, which we termed the noise floor, over 20–30
experiments ranged from 20 to 30%, which is similar to the value
found by Oliver et al. for their automated CNT growth furnace.14

By the end of the experimental campaign the variability in the
experimental values matched the noise floor. Thus we conclude
that ARES was able to target growth rates to the degree of
variability intrinsic to our system. Hereafter we use ‘on-target’ to
refer to experiments whose growth rates matched the predicted
growth rates within the variability of the system.
Having achieved experimental convergence we endeavoured to

analyse the results with ex situ characterisation and data mining.
We extracted a subset of experiments that achieved the targeted
growth rate. Scanning electron microscopy imaging after growth
confirmed that experimental growth rates measured in situ were
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commensurate with CNT yield. Figure 2 shows the results of
growth experiments that achieved on-target rates of 500, 3,000
and 16,000 s− 1, and demonstrates that the density of CNTs in the
scanning electron microscope images is proportional to the
experimentally observed growth rates.
We then analysed the progression of experimental conditions

selected by ARES that led to growth rate convergence. In each
iteration, the initial sampling of growth conditions from the
genetic algorithm was inherently stochastic, yielding a ranked list
of suggested experiments where predictions closest to the
objective were prioritised. In order to avoid proposing the same
experiment repeatedly, suggestions from using the genetic
algorithm were further filtered based on proximity to existing
data (assessed by Euclidian distance), to prioritise selection of
‘different’ experiments. In an early task, when models were trained
from a limited and sparse data-set, this strategy led to emphasis
on a broad range of parameter choices (Figures 3a and b) and
resulted in few experiments matching the predictions: Only 8%
were on-target. In a later task (Figures 3c and d) models were
trained from a three times larger data-set. The resulting
improvement in models’ fidelity led to better match between
predictions and experiments (68% of on-target experiments) and a
narrow range of experimental parameters selected by the filtering
algorithm. The narrow ranges of parameter choices in Task 10 are
significant, representing convergence on a set of growth
conditions that can be used as a growth recipe.
We then analysed the entire database of experiments for

insights into growth kinetics. The average water/ethylene ratio in
Task 10 is 1.6 × 10− 3 (Supplementary Figure S3a), which is
comparable to the 1 × 10− 3 reported to maximise CNT yield and

Figure 1. Demonstration of ARES learning to target CNT growth
rates. (a) Experimental and predicted growth rates. (b) Mean (μΔ)and
s.d. (σΔ) of the normalised difference between experimental and
predicted growth rates. Initially the experimental rates were
scattered far from the predicted (i.e., large σΔ and μΔ deviating
from zero). As ARES learned over hundreds of experimental
iterations the experimental rates converged (shaded area) to the
predicted ones. This resulted in μΔ trending towards zero, and σΔ
trending towards 30%, the noise floor of the system.

Figure 2. SEM images demonstrating correlation between growth
rate and yield of CNTs. On-target experiments with growth rates
near the predicted ones of (a) 500, (b) 3,000 and (c) 16,000 (s− 1). The
time over which the nanotubes grew was approximately the same.
The amount of nanotubes in the images increased in proportion to
the growth rate. Scale bars: 500 nm.

Autonomy in materials research
P Nikolaev et al

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2016) 16031

3 
Distribution A. Approved for public release (PA): distribution unlimited.



growth rate by Futaba et al.40,41 We also found that the rate
dependence on the temperature (Supplementary Figure S3b)
corresponds to the well-established Puretzky model42 with
activation energy Ea = 1.1 ± 0.3 eV, which is within the 0.6–1.5 eV
range reported in the literature and is interpreted as the activation
energy of the precursor decomposition reaction on the catalyst
surface.42–44

The data mining results highlight ARES’ ability to search across a
complex, multi-dimensional parameter space. All of these growth
parameters are known to significantly affect CNT growth, and
typically require extensive experimentation and serial optimisation
by conventional methods.40,41 The ability of the ARES planner to
optimise multiple experimental parameters simultaneously
and converge on the predictions highlights its efficacy in solving
complex materials research problems that challenge human
researchers using conventional, non-autonomous research
processes.

DISCUSSION
We believe ARES is the first demonstration of an autonomous
research system in the area of materials science. The ability of
ARES to learn to control the growth rates of CNTs in multi-
dimensional parameter space and over a range of rates is an
inroad to the complex and vexing challenge of controlled
nanotube synthesis. It also opens broad areas of applicability to
other materials research problems, including other CVD reactions,
additive manufacturing, metal oxidation, etc. In general, the
advantage of the ARES method lies in the application of artificial
intelligence and autonomy to research problems that are
automatable, have large, complex experimental parameter spaces,
and can be probed by in situ characterisation techniques to enable

closed-loop feedback. These advantages come at the expense of
the time needed for hardware and software development.
However, as ARES development expands to more materials
development problems, we expect the time and resources needed
to adapt it to a particular research problem will progressively
reduce. The iterative closed-loop approach contrasts with high-
throughput/combinatorial techniques in important ways—they do
not have autonomous feedback, and have slow iteration rates.3 In
addition, the broadcast nature of library generation results in large
numbers of uninformative experiments.
Beyond faster and more efficient experimentation, ARES

changes the size, complexity and risk of problems undertaken
by researchers who operate under constrained resources. Because
ARES enables more challenging experimental campaigns we
expect ARES to be a disruptive tool for the research process itself.
The immediate future for ARES includes the planner development
to enable targeting of multiple objectives as well as expanding the
diversity of AI planning algorithms. Random forest/genetic
algorithm was just the first learning algorithm we used. ARES
enables the application of a variety of AI learning approaches, with
the distinct advantage of its iterative method driving the
continuous updating and refinement of the AI planner. We will
also incorporate more human-interpretable prior knowledge in
the form of physical and chemical models, simulations and
materials.
ARES also has implications for the role of human researchers

and human-machine interaction, which is a topic of interest in the
autonomous robotics community. In our case, humans chose the
experimental area (CNT growth), the feedback signal and
objective (maximum growth rate), seeded the database to
initialise the AI planner, and periodically modified the objectives
in response to the observed experimental progress. As we
continue to develop autonomous research methods, ARES creates
a need to explore and define human-machine interaction for
generalised research processes, including goal definition, experi-
mental path planning, progress towards goals, human-machine
trust (e.g., awareness and reporting of the system and environ-
mental state), and oversight. In a future where repetitive,
mundane tasks are efficiently dispatched by ARES, and AI analysis
of high-dimensional parameter spaces is done iteratively,
researchers will be freed to work to their strengths, performing
creative, insightful and contextual tasks.

MATERIALS AND METHODS
The ARES instrument diagram is shown in Supplementary Figure S1. CNTs
were grown in a cold-wall CVD chamber installed on a two-axis motion
stage above an inverted Raman microscope (Eclipse-Ti, Nikon, Mellville, NY,
USA). The growth wafer consisted of 5 × 5 arrays of silicon pillars spaced
50 μm apart on a thermally insulating SiO2 sublayer, which were 10 μm tall
and 10 μm in diameter (Supplementary Figure S1 inset). The pillars were
coated with a 10 nm ALD (atomic layer deposition) alumina support layer,
on which a 2 nm Co catalyst film was deposited by electron beam
evaporation. Each pillar constituted an independently addressable micro-
reactor, which was heated by a 532 nm laser (Verdi V6, Spectra-Physics,
Santa Clara, CA, USA) that doubled as the Raman excitation source through
a 50× extra-long working distance objective lens. Raman spectra were
collected from a ~5 μm size spot illuminated by the excitation laser. The
small thermal mass of the pillar combined with the low thermal
conductivity of the SiO2 sublayer enabled heating to reaction temperatures
within a fraction of a second when laser power was varied in the 0–2 W
range. The CVD chamber pressure was measured by a capacitance
pressure gauge (MKS) and regulated by a throttle valve (MKS) exhausting
into a vacuum pump. H2, C2H4 and Ar feedstock gases ware metered in
varying ratios via mass flow controllers (MKS, Andover, MA, USA). Water
vapour was introduced and controlled through a throttle valve (MKS), and
its concentration was kept constant via a PID control loop with a dew point
sensor (Shaw, Bradford, UK) as a feedback. The temperature-induced shift
of the Si stokes and anti-stokes Raman bands (±520 cm− 1) was used to

Figure 3. Variability in the experimental parameter space with
learning. Experimental conditions chosen by ARES in Task 3, before
convergence (a, b), and in Task 10, after convergence (c, d), are
compared over four experimental parameters (temperature, water
concentration, and H2 and C2H4 partial pressures). Red dots
represent successful, on-target experiments. (a, b) Before conver-
gence ARES sampled a wide range of growth conditions, and only
8% of experiments were on-target. (c, d) After convergence ARES
sampled a narrow range of growth conditions, with 68% on-target
experiments, demonstrating its ability to autonomously optimise
multiple experimental parameters.
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calculate the growth temperature according to the following equation:

Δo Tð Þ ¼ C 1þ 2
e_o0=2kBT - 1

� �
þ D 1þ 3

e_o0=3kBT - 1
þ 3

e_o0=3kBT - 1ð Þ2
" #

ð1Þ
Here kB is Boltzmann’s constant, ħ is Plank’s constant, and ω0, C and D

are constants with the values 528, − 2.96 and − 0.174 cm− 1, respectively.45

The accuracy of the temperature measurement was estimated to be within
~ 10–20 °C.
The two-axis motion stage, microscope focus (z), mass flow controllers,

pressure controller, water controller, laser, shutters and spectrometer were
all simultaneously controlled by custom software developed for 64-bit
Windows 7 in C#/.NET 4.0 using Windows Visual Studio 2010. In a typical
series of experiments, the planner was first given an objective. The
database of the previous experiments containing inputs (temperature,
pressure, gas flow rates, etc.) and outputs (kinetic parameters) was
transferred to the planner. The planner converted flow rates and pressure
into partial pressures of the constituent gases, built a model correlating
inputs and outputs, and generated experimental conditions and predicted
growth rate. The first pillar was positioned under the laser and the growth
atmosphere was set to the intended composition. The laser power was
increased in less than a second, and in-situ Raman spectra were acquired in
5 s intervals, with each spectrum processed in real time to obtain
temperature (from Si bands’ shifts) and CNT G- and D-band areas.
Nanotube nucleation and growth was detected by the appearance and
increase in intensity of G- and D-bands seen at ~ 1,590 and ~1,350 cm− 1

(Supplementary Figure S1a). The G-band area was normalised by the laser
power, by the Bose thermal occupation factor ½1 - expð_o=kBTÞ�- 1 (ω is
G-band frequency, T is temperature), and by the area of the Si stokes peak
at 520 cm− 1 obtained with 200 mW laser power and 30 s exposure that
served as a proxy for the spectrometer throughput. Normalisation was
necessary in order to compare G-band areas and rates across different
experiments, and resulted in the rate measured in units of s− 1. Upon
experiment completion (300 s typical time) the normalised G-band area
versus time dependence (‘growth curve’) was automatically fit with
equation (2) (Supplementary Figure S2b), and the resulting kinetic
parameters were written into the database along with experimental
inputs. The last room-temperature spectrum (Supplementary Figure S2c)
was acquired with 200 mW power and 30 s exposure:

G tð Þ ¼ Gmax 1 -
1þ y0

1þ expððt - t0Þ=τÞ
� �

: ð2Þ

The updated database was transferred to the planner, and the cycle was
repeated. This allowed up to 25 experiments in autonomous mode
(without human intervention), updating the database after each experi-
ment to build an improved model.
Electron microscopy characterisation was done in FEI Sirion SEM (FEI

Company, Inc., Hillsboro, OR, USA) equipped with a field-emission gun and
a through-lens detector (TDI) detector, at 4 keV accelerating voltage. Since
pillars were on a silicon dioxide sublayer, charging could be severe. As a
result, nanotubes present as sparse films (Figure 2a) often appeared in
inverse contrast (dark lines on bright background). Thick nanotube mats
(Figures 2b and c) tend to eliminate charging.
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